【1102期】3月1日计量经济学学术研讨会:L1-penalized Pairwise Difference Estimation for a High-dimensional Censored Regression Model(潘哲文,副研究员,中山大学岭南学院)

时间:2022-02-25

【主题】L1-penalized Pairwise Difference Estimation for a High-dimensional Censored Regression Model

【报告人】潘哲文(副研究员,中山大学岭南学院)

【时间】202231日 星期二 09:30-11:00

【地点】Zoom链接:https://us02web.zoom.us/j/88593206613会议ID885 932 06613,会议密码:580002

语言】中文

【摘要】High-dimensional data are nowadays readily available and increasingly common in various fields of empirical economics. This paper considers model selection and estimation for a high-dimensional censored linear regression model. We combine L1-penalization method with the ideas of Honoré and Powell (1994) and propose an L1-penalized pairwise difference least absolute deviations (LAD) estimator. Model selection consistency, estimation consistency and asymptotic normality of the estimator are established under regularity conditions. We also propose a post-penalized estimator that applies unpenalized pairwise difference LAD estimation to the model selected by the l1-penalized estimator, and find that the post-penalized estimator generally can perform better than the l1-penalized estimator in terms of the rate of convergence. Novel fast algorithms for computing the proposed estimators are provided based on the alternating direction method of multipliers. A simulation study is conducted to show the great improvements of our algorithms in terms of computation time and to illustrate the satisfactory statistical performance of our estimators.

【报告人简介】潘哲文,博士毕业于中山大学岭南学院,现为中山大学岭南学院副研究员。研究兴趣为微观计量经济学理论与应用,研究成果发表于Journal of Business & Economic Statistics、《中国科学:数学》等期刊,主持国家自然科学基金青年项目和面上项目各一项。

个人主页:https://lingnan.sysu.edu.cn/faculty/PanZhewen


返回原图
/